Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(3): 110260, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045284

RESUMO

In their Matters Arising article, McMullan et al. (2022) offer alternative explanations for the phenotypes we observed upon stimulation and ablation of TrkCCreERT2-positive neurons in mice. Their interpretations are focused on two aspects: first, whether the vasoconstriction we observed upon activation of TrkCCreERT2 neurons is really mediated by TrkC/TH-positive neurons, or whether it might stem from stimulation of somatic nociceptors that also express TrkC; and second, whether the lethality observed after ablation of TrkCCreERT2 neurons might be a result of ablation of vagal afferents and not TrkC/TH neurons located in the spinal ganglia. Central to both of these concerns is the expression and recombination efficiency of the TrkCCreERT2 transgene in these other cell types. This Matters Arising Response paper addresses the McMullan et al. (2022) Matters Arising paper, published concurrently in Cell Reports.


Assuntos
Gânglios Espinais , Neurônios , Animais , Homeostase , Camundongos , Receptores Proteína Tirosina Quinases , Recombinação Genética
2.
Cell Rep ; 35(9): 109191, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077727

RESUMO

The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.


Assuntos
Pressão Sanguínea/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Animal , Fluoresceína/metabolismo , Gânglios Espinais/fisiologia , Frequência Cardíaca/fisiologia , Camundongos Transgênicos , Receptor trkC/metabolismo
3.
Pain ; 162(5): 1334-1351, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33492037

RESUMO

ABSTRACT: Diabetes is a leading cause of peripheral neuropathy (diabetic peripheral neuropathy, DPN), and uncontrolled long-lasting hyperglycemia leads to severe complications. A major proportion of diabetics develop excruciating pain with a variable course. Mechanisms leading to painful DPN are not completely understood and treatment options limited. We hypothesized that epigenetic modulation at the level of microRNA (miRNA) expression triggered by metabolic imbalance and nerve damage regulates the course of pain development. We used clinically relevant preclinical models, genome-wide screening, in silico analyses, cellular assays, miRNA fluorescent in situ hybridization, in vivo molecular manipulations, and behavioral analyses in the current study. We identified miRNAs and their targets that critically impact on nociceptive hypersensitivity in painful DPN. Our analyses identify miR-33 and miR-380 expressed in nociceptive neurons as critical denominators of diabetic pain and miR-124-1 as a mediator of physiological nociception. Our comprehensive analyses on the putative mRNA targets for miR-33 or miR-124-1 identified a set of mRNAs that are regulated after miR-33 or miR-124-1 overexpression in dorsal root ganglia in vivo. Our results shed light on the regulation of DPN pathophysiology and implicate specific miRNAs as novel therapeutic targets for treating painful DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , MicroRNAs , Neuropatias Diabéticas/genética , Gânglios Espinais , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , Células Receptoras Sensoriais
4.
Nat Biomed Eng ; 3(2): 114-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30944432

RESUMO

Itch-a major symptom of many chronic skin diseases-can exacerbate inflammation by provoking scratching and subsequent skin damage. Here, we show that activation, via near infrared illumination, of a phototoxic agent that selectively targets itch-sensing cells can reduce itch-associated behaviours in mice. We generated a SNAP-tagged interleukin-31 (IL-31) ligand derivative (IL-31K138A-SNAP) that selectively binds receptors on itch-associated cells, without evoking IL-31-receptor signalling or scratching, and conjugated it to the photosensitizer IRDye 700DX phthalocyanine. Subcutaneous injection of IL-31K138A-SNAP-IR700 in mice followed by near infrared illumination resulted in the long-term reversal of the scratching behaviour evoked by the pruritogenic IL-31, an effect that was associated with the selective retraction of itch-sensing neurons in the skin. We also show that a topical preparation of IL-31K138A-SNAP-IR700 reversed the behavioural and dermatological indicators of disease in mouse models of atopic dermatitis and of the genetic skin disease familial primary localized cutaneous amyloidosis. Targeted photoablation may enable itch control for the treatment of inflammatory skin diseases.


Assuntos
Comportamento Animal , Epiderme/inervação , Interleucinas/uso terapêutico , Luz , Prurido/patologia , Prurido/terapia , Células Receptoras Sensoriais/patologia , Doença Aguda , Amiloidose Familiar/patologia , Animais , Movimento Celular , Células Dendríticas/patologia , Dermatite Atópica/patologia , Dermatite Atópica/prevenção & controle , Modelos Animais de Doenças , Epiderme/patologia , Indóis/química , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Psoríase/patologia , Dermatopatias Genéticas/patologia
5.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176651

RESUMO

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Assuntos
Exossomos/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Exossomos/genética , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuralgia/genética , Neuralgia/imunologia , Fagocitose , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
6.
Elife ; 52016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27976998

RESUMO

At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.


Assuntos
Acetiltransferases/metabolismo , Neurônios Aferentes/enzimologia , Neurônios Aferentes/fisiologia , Processamento de Proteína Pós-Traducional , Tato , Tubulina (Proteína)/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Deleção de Genes , Camundongos , Proteínas dos Microtúbulos
7.
EMBO Rep ; 17(4): 585-600, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26929027

RESUMO

Itch, the unpleasant sensation that elicits a desire to scratch, is mediated by specific subtypes of cutaneous sensory neuron. Here, we identify a subpopulation of itch-sensing neurons based on their expression of the receptor tyrosine kinase Ret. We apply flow cytometry to isolate Ret-positive neurons from dorsal root ganglia and detected a distinct population marked by low levels of Ret and absence of isolectin B4 binding. We determine the transcriptional profile of these neurons and demonstrate that they express neuropeptides such as somatostatin (Sst), the NGF receptor TrkA, and multiple transcripts associated with itch. We validate the selective expression of Sst using an Sst-Cre driver line and ablated these neurons by generating mice in which the diphtheria toxin receptor is conditionally expressed from the sensory neuron-specific Avil locus. Sst-Cre::Avil(iDTR) mice display normal nociceptive responses to thermal and mechanical stimuli. However, scratching behavior evoked by interleukin-31 (IL-31) or agonist at the 5HT1F receptor is significantly reduced. Our data provide a molecular signature for a subpopulation of neurons activated by multiple pruritogens.


Assuntos
Gânglios Espinais/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Prurido/genética , Células Receptoras Sensoriais/metabolismo , Somatostatina/genética , Animais , Perfilação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Hibridização In Situ , Lectinas/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Receptor de Fator de Crescimento Neural/genética
8.
Nat Methods ; 12(2): 137-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486061

RESUMO

Fluorescent protein reporters have become the mainstay for tracing cellular circuitry in vivo but are limited in their versatility. Here we generated Cre-dependent reporter mice expressing the Snap-tag to target synthetic indicators to cells. Snap-tag labeling worked efficiently and selectively in vivo, allowing for both the manipulation of behavior and monitoring of cellular fluorescence from the same reporter.


Assuntos
Corantes Fluorescentes/química , Técnicas de Introdução de Genes/métodos , Genes Reporter , Integrases , Proteínas Recombinantes de Fusão/química , Animais , Proteínas da Matriz Extracelular/genética , Integrases/genética , Camundongos Transgênicos , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteína-Lisina 6-Oxidase/genética , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...